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Abstract

This paper discusses the empirical and theoretical underpinnings of the travel cost method (TCM) for estimating nonmarket
benefits at an outdoor recreation site. The conventional TCM model is simple to use and provides results that are easy to interpret.
However, it does not describe the actual behavior of recreationists as they purchase goods and services for the purpose of making
trips to an outdoor recreation site. There is an alternative model that is more congruent with the empirical behavior of recreationists.
This model is called the multi-commodity or total expenses TCM model. The total expenses model can also be used to estimate
the nonmarket benefits provided by trips to an outdoor recreation site. Moreover, the total expenses model can be derived from
the conventional basic postulates of utility maximization. Our purpose in delineating the total expenses model is not to replace the
conventional model, but to provide an alternative model. We apply this model to survey data gathered from Trinity River rec-
reationists, and estimate annual nonmarket benefits conferred from recreation activities of US$406 million. 1998 Published by
Elsevier Science Litd.

Keywords: Travel cost method (TCM); Recreation site; Benefits; Consumer surplus

and 8 MB RAM.
Basic and Fortran

Software availability
Program language(s):

Software name:
Developer:
Contact address:

First available:

Hardware required:

Software required:

Software cost and
availability:

Program size:

Limdep™ (Version 7)
Econometric Software, Inc.
43 Maple Avenue,
Bellport, New York, USA,
Tel.: + 001-516-286-7049;
Fax: + 001-516-286-7049.
1995

IBM compatible 386 or
486 PC running MS-DOS.
Limdep™ (Version 7.0 for
Dos)

Cost is about US$725; can
be ordered by phone at +
001-516-286-7049 or by
mail sent to contac
address. :

2.7-2.9 MB of disk space;

* Corresponding author. Tel.: + 001-970-226-9427; fax: + 001-
970-226-9230; e-mail: aaron—douglas@usgs.gov

1364-8152/98/$ - see front matter. Published by Elsevier Science Ltd.

PII: S1364-8152(98)00060-7

Software name:

Developer:
Contact address:

First available:

Hardware required:

Software required:

Software cost and

S-Plus™ (Windows
Versions 3.3 and 4.0)
MathSoft, Inc.T

1700 Westlake Avenue N,
Seattle, Washington, USA,
Suite 500, Tel.: + 001-
800-569-0123; E-Mail:
mktg @stasci.com; Fax: +
001-206-283-8691.

1997 (Windows Version
4.0)

Must be 486 or Pentium
66 MHz machine with
math coprocessor and
Windows 95; or running
Windows NT or Windows
3.1 X and Win 32s
S-Plus™ (Windows
Version 4.0)

Costs about US$1350: can



82 A.J. Douglas, J.G. Taylor/Environmental Modelling & Software 14 (1999) 81-92

availability: be ordered by phone at +
001-800-569-0123 or by
mail sent to contact
address.

40 MB (typical
installation) disk space and
32 MB RAM

S-Plus™, Basic, Fortran

Program size:

Program language(s):

1. Introduction

The conventional travel cost method (TCM) model
(Clawson and Knetsch, 1966; Hof and King, 1992) is
based on the premise that recreationists who visit an out-
door recreation site pay more to access the site as the
distance between their residences and the site increases.
A key assumption of the model is that the opportunity
cost of visiting the site—the travel cost—is an increasing
function of the travel distance. On the other hand, the
utilities generated by visits to the site are a function of
an array of discretionary expenditures. While the pur-
chases of the services of a guide, or supplies can gener-
ate important on-site utilities they are not, presumably,
a function of the travel distance. Thus, for the conven-
tional model, the purchase of goods that provide on-site
utilities does not vary systematically with the travel dis-
tance.

There is no loss in analytic generality in assuming that
the bundle of goods that generate trip utilities—but are
unrelated to travel cost—is identical for all consumers
in the conventional TCM model (Hof and King, 1992).
The antipodal premise is that the purchase of all trip-
related commodities is a stable function of the distance
to the site. In this case, the conventional TCM model
would have to be reformulated to develop a new concep-
tual basis for calculating the consumer surplus. The cur-
rent paper examines the empirical validity of the TCM
and develops an alternative model that can be used if
the expenditure data suggests that the empirical behavior
of recreational users of a site is not consistent with the
premises of the conventional TCM.

The consumer surplus is calculated with the conven-
tional micro-data variant TCM model by first estimating
a regression relation between the travel cost, which is a
simple function of the travel distance, and the number
of trips (Douglas and Johnson, 1993). Let TC be the tra-
vel cost and s be the round-trip distance to the site. The
Federal government currently reimburses automobile tra-
vel at the rate of US$0.31 per mile; in this particular
case, TC = (0.c)s = (0.31)s.

Non-travel cost expenses, demographic and socio-
economic variables, and trip quality variables (for
example, the number of fish caught or ducks bagged) are
held at the sample means in estimating the consumer

surplus for trips to the site. The -area underneath the
curve relating trips to the site and travel cost, above the
mean travel cost, is the consumer surplus for the house-
hold. Nonmarket benefits provided by the site are equal
to the consumer surplus (Douglas and Johnson, 1993).
Data on the number of households that use the site and
the mean number of trips per household are needed to
estimate the aggregate consumer surplus.

2. Comparing mathematical models

In the conventional TCM model the agent chooses the
optimum number of trips subject to a budget constraint.
In the simple case analyzed here in Eqgs. (1), (2a), (2b)-
(4), the number of trips to the site is a real number and
there is only one site. The opportunity costs of trips are
out-of-pocket cash expenditures that are a function of
the number of trips and the distance to the site.

Let U(N, x) be the utility function, where N = 0 rep-
resents the number of trips per unit time, ¥ > 0 be
income, s the round-trip distance to the site, p, > 0 be
the unit price of travel, and x be the level of consumption
of a (bundle of) market goods. Then TC = p, = [s(p,)]
is the travel cost, and p, > 0 is the price of the market
good, and the household maximizes utility subject to the
budget constraint. A major focus of the analysis is to
demonstrate the usefulness of making a sharp distinction
between TC—a linear function of the distance to the
site—and a very disparate definition of travel cost as a
certain fraction of total trip expenditures. The utility
function is strictly monotonically increasing, strictly
concave, bounded from below at U(D) = 0, continuous,
and has continuous first and second derivatives; N is a
real number, not an integer. To find an internal
maximum, form the Lagrangean expression

L= [UWN,x) + MY = p,N = px)]. (D

The second term in (1) represents the budget con-
straint; namely, that any nonnegative consumption vec-
tor is feasible if expenditures needed to purchase the
bundle do not exceed income. The optimum value of
N maximizes L. Denoting partial derivatives for U with
subscripts, the first-order maximum conditions for N are
stated in Eq. (2a) and Eq. (2b);

oL
3N = UpMN, x) — Ap, = 0; thus, Uy(N, x) (2a)

= Apn-

oL
ox
= Dy

= U(N,x) — Ap, = 0; thus, U(N, x) (2b)
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A third condition can be derived by differentiation of
L with respect to A = 0, and setting the derivative equal
to zero. Namely at an optimum, the budget constraint
holds with equality;

oL
YN =Y —pyN —px) =0; Y= puyN + px. (2¢)

Let N* be the optimum value of N, and [(p,)"'Y] > N
= N* > 0 so that the first-order conditions hold at (N*,
x*). Assume that this pair of equations can be inverted
to find continuous differentiable single valued functions,
&.p. po and gJ(p,, p.) that may be regarded as the
demand curves for N and x. We also assume that

%8, % _ 3)
ap,

<0 .
op.

2

There is little loss in generality in eliminating x from
the utility function by ‘solving’ the budget constraint for
N and substituting the resulting expression in U; U =
HI[N, (p)"(Y — p,N)]. The function H is a numerical
representation of a consumer’s utility as a function of N
whose domain of definition is the set of nonnegative vec-
tors (N, x) for which expenditure equals income. The
function U has as domain of definition the larger subset
of nonnegative vectors (N, x) for which expenditures are
less than or equal to income. If H is strictly concave in
N, the global optimum is unique, and (3) must indeed
hold. The function H is useful in examining corner
optima. The graph of N versus TC( = (0.c)s) is the con-
ventional TCM micro-variant demand curve, and the
area under this curve above the mean travel cost, is the
household consumer surplus (see Fig. 1). To convert this
value into an aggregate annual value, the number of
households using the site in a given year must also be
known.

Clearly, all trip related goods generate utilities, hence
the consumption of all trip related goods should enter
the utility function. However, these goods provide trip
related utilities if and only if the number of trips to the
site is positive. This last condition might be called a
weak complementarity condition. There is another facet
of the constraint set in the multi-commodity variant of
the TCM, and this constraint element does not occur in
the conventional model.

In the previous model, the household ‘purchased’ trips
to the site even though trips to the site are not sold in
competitive market. In a multi-commodity setting, it is
useful to explicitly model the manufacture of trips by
the household. Consider a rural family with 14 members
which operates a farm sales equipment store. This family
owns a 40-acre plot of land that it uses to raise veg-
etables for direct consumption when the family has 14
people eating meals. The children grow up and leave the

T
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expenditures—»>. S~
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Fig. 1. FF and GG represent trips versus fuel expenditures and guide

expenditures curves for the trip demand curve TT.

household. Eventually the family household shrinks to a
pair of parents, who operate and sell the produce from
the 40-acre plot of land so as to maximize net revenues.
Clearly, the owner-operators of this truck garden face a
production function for raising vegetables regardless of
whether they sell the output in the market or consume
the output at the dinner table. When the family grows
vegetables for direct consumption it is formally correct
to introduce the production function into an augmented
utility function.

We introduce the production function into an aug-
mented utility function in our analysis in order to provide
a formal version of the conventional TCM model. The
utility function is now U(N; x,,..., X,; 2) = UN; %; z)
where p. and z are the price and the quantity of the
(bundle of) other market good(s);

U(N; x5 %5 0) = 0, U(0; x;0) = 0. (€))

The utility function passes through the origin, and
U; 0; 0) = 0; it is bounded from below by 0, and
is unbounded from above. It is strictly concave, strictly
monotonically increasing for N > 0, and has continuous
first- and second-order partial derivatives.

The budget constraint is

m

Y= Zp-pci +pz Y>0. %)

i=1

Because Y > 0, the set of nonnegative vectors (£, z)
that satisfy (5) is a non-empty, compact (e.g., closed and
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bounded), convex set. The number of trips are the output
of the production process. In this model all effects of
changes in the distance from the site are captured by
changes in the cost of the trips. From (4), the consumer
maximizes U[G(%), %, z), for 0 = %, 0 = N = G(¥), and
0 = z. The production function G(%) is strictly monoton-
ically increasing, strictly concave, has continuous first
and second partial derivatives, is unbounded from above,
and G(0, 0, 0) = 0.
Marginal utility for all goods are positive; thus,

oU oU .

av = Uz 0 5 = U 0= Lo (62)
and

oG .

o G,>0,i=1,..m (6b)

Let Uy, Uy, and G;; designate second-order partial
derivatives, and U; and G;; designate second-order Cross-
partial derivatives;

UNN < Ov Uii < 07 Gii < 07 i = 15""m- (60)

3. The analysis of a multi-commodity model

The model is reformulated in this section so that the
conventional theory of consumer choice can be used as
a guide to the derivation of the economic effects.
Assume that the augmented utility function U[G(%), %;
z] is monotonically increasing and strictly concave in .
The model can be simplified by introducing two new
variables into the model, the unit price of trips to the
site p, > 0, and the price of trips to the site py = [s(p)];
in this manner we can deal with changes in the price of
trips to the site. The Lagrangean for the maximization
problem is now

m

L=U[G®), %2 + AlY — D, px; — pz ©)

i=1

= s(psG(x)].

We further simplify the model by dropping p, and z
from the model. There is at least one good x; that pro-
duces trip related utilities for which G; = 0, and one
good x; that produces non-trip related utilities (and there-
fore G; = 0) in the set of m goods. Hence, if G, =20
for x; one can regard x; as a good that produces trip
or non-trip related utilities. The weak complementarity
condition does not hold for the (set of) good(s) that gen-
erates non-trip utilities; this (bundle of) good(s) gener-
ates utilities even if no trips occur.

The first-order maximization conditions for an internal
maximum are

L
g; = G(Uy) + U, — A\p; — Msp)G; = 0 )

for i = 1,..., m. The derivative of L with respect to A
must also equal zero; at a constrained maximum, the
budget constraint is satisfied with equality. Recall that
the set of nonnegative vectors that satisfy the weak
inequality for the budget constraint is non-empty, com-
pact, and convex. Every continuous function on a com-
pact set attains its maximum, hence there is at least one
feasible nonnegative consumption vector that maximizes
utility relative to other feasible vectors. Let /(%) be the
sum of the terms in (8) that contain the decision vari-
ables;

h(x) = UMG) + U; = Ap(sG)). &)

The price, distance, and income effects for the demand
equations can be developed by finding the total deriva-
tives for h(x) with respect to the decision variables,
lambda, the prices, distance, and income.

The total derivatives are

a J
= Adp; + (AG))p,ds

Bh,- m ah,—
|:_xi:|dXi " z[ax}d’% = [pi + p(sGpldA (10)

for each h(x), i = 1,...,m. The border is

n m m

— Y pdx, = sp, >, Gdx, = — dY + X xdp, (11

i=1 =1 i=1

+ p,G ds.

Differentiating the right-hand side of Eq. (9),

g];: = U(G;) + Uy(G)* + 2Un(G) + Uy (12)
= A(sp)Gii

and

oh;

5 = UMGy) + Uw(GG) + Un(G) (13)

i
+ Up(G) + Uy — Msp))Gy.
The next step is to solve for the derivatives with

respect to distance for the system of equalities formed
by Egs. (8)-(13) with the aid of Cramer’s rule
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(Henderson and Quandt, 1980). Let D be the determinant
of the matrix of coefficients M;

[, dn,
aon [pr + p(sG))]
M _ ahah ........................... (14)
—-a;’lﬁ BX’: e T [pm + px(SGm)]
L= [p1 + pLsGD]----- 0 i

The system of (m + 1) linear equations formed by
(12) and (13) can be solved for dA and dx; as functions
of the differentials of the prices and income in terms of
the cofactors of D by treating the terms on the right-hand
side(s) as constants. The cofactor of the ijth element of
D is Dy; thus,

i

% = (D YAp(D:G; + 2.D;G;) (15)

+ Gp(Dg, + I)i)] < 0.

FE

The sign of the partial derivative is based on certain
conventional assumptions; namely, that (16) and (17)
hold;

dx;  ADy;

», D 0; (16)
and

ox; _ D + 1yi

YA D > 0. (17)

Eq. (16) implies that the pure substitution effect,
(AD™Yp,ID,;(G))] of an increase in distance is negative,
and (17) implies that the income effect,
[(D™')GP)D i1y, of an increase in distance is negative
(Henderson and Quandt, 1980). Next, consider the
matrix C with typical diagonal element (AD™")p [D;{(G))],
and typical off-diagonal element (AD™")p,[D;(G)]. If
(15) holds and C has a strict column dominant diagonal
(e.g., if the diagonal element is greater in absolute value
than the sum of the absolute values of the off-diagonal
column elements) (Karlin, 1958) then the sum of the first
two terms in the square brackets in (15) will be negative.
If (17) also holds, then the inequality in (15) must hold.

The model was developed, however, so that it would
be applicable to the case in which U; > 0, but G; = 0
for some trip related goods. However, both the set of
diagonal elements and the set of off-diagonal elements
for the matrix M contain non-zero elements if G, = 0
for all goods. Hence, the determinant D is non-zero; and

the sign of the partial derivative in Eq. (15) may still be
negative. However, the dominant diagonal condition for
C for good i can hold only if G, > 0. If G, = 0, the
diagonal term is zero, which means that the strict column
dominant condition cannot hold.

If the sign of the partial derivative in (15) is negative
but G; = 0, then the ‘indirect effect’ of an increase in
travel decreases the rate of purchase of the good. If the
dominant diagonal condition holds, then Eq. (16) and
Eq. (17) are correct, and an increase in travel distance
reduces consumption. The total expenses TCM is useful
when the indirect distance effect for non-travel cost
linked trip services is negative, readily identified, and as
strong as the direct effect. The fact that (15) can have a
negative sign for all trip related commodities is part of
the rationale of the multi-commodity TCM. In the ensu-
ing discussion, assume that (15) holds for all trip related
goods in the multi-commodity TCM model.

4. Consumer surplus in the multi-commodity case

From (15), the demand for trips as a function of travel
distance is a strictly monotonically decreasing function.
Label the optimal consumption vectors associated with
trip distances s, and s, as ¥, and %, respectively with
sy > 8,. Then, (15) implies that %, > %,. The strict mono-
tonocity of the production function in turn implies that
N, = G(x,) < N, = G(x,). Therefore, if g, is the demand
function for trips, and N* is the number of trips
demanded,

, ON*
N* = gn(sps’ ﬁxa X, Y)a '-a‘; < 0. (]-8)

However, the level of expenditures on trip related
commodities is not a monotone decreasing function of
distance. Total trip expenditures may rise or fall; if the
demand for total trips is inelastic with respect to an
increase in p,, they will increase; if it is elastic, they
will fall.

The expenditure function is E*(s),

E*(s) = 2, pa*(s), (19)

i=1

where E*(s) is per trip expenditures. The function E*(s)
measures the rate at which income must be allocated to
trips to the site by the household in order to hold the
annual consumption of x* fixed. If x* is fixed as distance
increases, then the optimal number of trips will be con-
stant at N = N* because the number of trips must satisfy
the production function relation, N* = G(x*). In this
context, total trip expenditures, like 7C in the conven-
tional model, is a pecuniary measure of travel distance.
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The area under the curve of the graph of the number of
trips versus total trip expenditures above the mean travel
expense is the consumer surplus.

The consumer surplus estimate generated by the trips
versus total expenses relation is for the total recreational
experience generated by trips to the site. It is clearly a
broader concept than the consumer surplus generated by
the conventional TCM model. By the strict concavity of
the augmented utility function, there is a unique number
of trips demanded for any given distance to the site. Each
distance from the site also corresponds to a unique quan-
tity demanded for each of the trip related items. Thus,
the total expenses demand curve can be decomposed into
a set of expenditure curves for individual trips related
items (see Fig. 1). In Fig. 1 each point on the fuel expen-
diture curve FF corresponds to an amount of money (per
unit time) spent on fuel. The vertical sum of the expendi-
ture curves is the total expenses demand curve (see Fig.
1). The consumer surplus for items such as fuel or guides
can be defined as the area underneath the graph of the
relevant expenditure curve above the horizontal mean
total expenses line (Fig. 1). This definition of the indi-
vidual item consumer surplus implies that the sum of the
consumer surpluses for the individual items is equal to
the total consumer surplus.

The definition of the consumer surpluses for the indi-
vidual items suggests a method for converting the total
expenses consumer surplus into a value that is compara-
ble with the conventional TCM consumer surplus. The
ratio of the area underneath the item expenditure curve
to the area underneath the trips versus total expenses
demand curve is approximately equal to the fraction of
expenditures spent on the commodity in question for any
point value of total expenses (Fig. 1). The sum of the
areas under the individual item demand curves must be
exactly equal to the corresponding area underneath the
total expenses demand curve. If the demand curve for
some item is exactly parallel to the trips demand curve,

_(CS) _E
0<rn=lcy~p=" (20)

where i indexes the ith trip related good, E; represent
expenditures on the ith category, E is total trip expenses,
(CS)) is the consumer surplus from the item demand for
the ith trip item, and (CS) is the total recreation experi-
ence consumer surplus. The simplest way to calculate
the TCM equivalent consumer surplus from the total
expenses demand curve is to define a synthetic good
called ‘travel cost’ whose demand curve is, by definition,
parallel to the total expenses demand curve. From Eq.
(20), the ratio of expenditures for travel cost to the total
trip expenses multiplied by (CS) provides (CS,.), the tra-
vel cost consumer surplus.

5. An empirical example

In Douglas and Taylor (1998a), we used the TCM to
estimate current nonmarket benefits from recreational
visits to California’s Trinity River. The data was gath-
ered from a survey that we administered in the winter
of 1993-1994 to Trinity River recreationists. The Trinity
River is the largest tributary of the Klamath River (Fig.
2). At one time, the only Pacific Coast river systems in
the lower 48 states that produced more anadromous fish
than the Klamath-Trinity system were the Columbia and
Sacramento River systems (Pacific Fishery Management
Council, 1995). In 1963, the Trinity Division of the Cen-
tral Valley project, including Trinity and Lewiston dams,
was completed (U.S. Bureau of Reclamation, 1980; see
Fig. 2). From 1964 through 1980 about 90% of the mean
annual 1.2 million acre-feet of the Trinity River outflow
from Trinity Dam was diverted to the nearby Sacramento
River and the Central Valley Project for hydropower,
agricultural, and other uses (U.S. Bureau of Recla-
mation, 1980). Damming the Trinity River also resulted
in a substantial loss of upstream spawning habitat, and
anadromous fish stocks declined 90% after 1964
(Hubbell, 1973). Thus the social cost of moving more
water down the Trinity River includes both foregone
hydropower and irrigation water. The economic benefits
are nonmarket recreational and off-site (existence or
preservation) benefits generated by improved stream-
flows and more viable and larger anadromous fish runs.

During the winter of 1993-1994 we mailed out 2044
Trinity River user surveys' to gather data needed to esti-
mate the nonmarket benefits of improved Trinity River
streamflows and fish runs to Trinity River recreationists.
The Planning Department of Trinity County mailed out
2717 surveys to a random selection of Pacific Coast
households to estimate the nonmarket benefits of
improved streamflows to Pacific Coast residents—this
survey was called the household survey. The household
survey and the user survey gathered information on the
willingness-to-pay for improved streamflows as well as
demographic characteristics of the respondents. The
household survey provided information on the number
of Trinity River recreationists.

The effective response rate for the mail-out user sur-
vey—most of the 1003 user responses for the TCM
analysis were mail-back responses—was 70%; address
unknowns were deleted in calculating response rates
(Douglas and Taylor, 1998b). The user survey data base
includes 1349 responses that could be used to make con-
tingent value method (CVM) streamflow benefits esti-
mates. Only 1003 responses included all of the infor-
mation needed for the TCM model including the number

' The user survey was approved by the Office of Management and
Budget (OMB approval number 1018-0085).
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of trips to the site, the one-way distance traveled, and
per trip recreation expenditures. Also, 412 respondents
did not report a full set of expense items so that one of
the expense values had to be imputed. The five variable
cost trips categories included in the total trips expenses
category include food, fuel, guides, lodging, and sup-
plies. We imputed values to missing total expenses data
by equating the value of the missing item to zero. Only
591 of the 1003 cases reported a complete set of
expenses. This subset is called the ‘full-expenses data
set” and was used to estimate the model (e.g., the values
for the parameters in (21) were determined from this data
set). The 412 observations with a missing expense item
is entitled the ‘incomplete-expenses data set’. The
incomplete data set was used to make out-of-sample
(conventional terminology) predictions of the dependent
variable and correlative goodness-of-fit sample statistics
(Creel and Loomis, 1990).
Eq. (21) works well with the Trinity River data set;

b. by ,
y=b+—+—+¢€ e~ NO, o), (21)

Xe Xa

where y is the number of trips per annum, x,. is average

7
Keswick Dam

Map of the Trinity River Basin with the route of the diverted water shown in detail.

total variable trips expenses, x, is one-way distance to
the site, b, > 0, and b, > 0, are the coefficients of the
explanatory variables, b is a constant, and the error term
is a random normal variable. If (21) is estimated by ordi-
nary least squares (OLS)—the OLS version of (21) was
estimated with Limdep™-—new variables are created
that are the inverse of travel expenses and the inverse
of travel distance. A dollar was added to expenses to
prevent the inverse from being infinite if expenses were
equal to zero; for the same reason 0.25 miles were added
to the distance. We also estimated a variant of (21) called
PII with a random Poisson distributed error term with a
maximum likelihood estimator and an S-Plus™ program.
Let e* = (exp x); we call the model in (22) the conven-

tional Poisson model because packages such as
Limdep™ estimate the canonical form
y = exp[c + blxl + ..t bnxu] (22)

with an error term that is a random, Poisson variable.
For PII, we estimated

y = [C + bcxl + ..o+ bnxn] + e (23)

The error term in (23) is a Poisson random variable.
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The OLS and PII versions of (21) produced good fits,
and total recreational consumer surplus estimates of
US$4.064 billion (Poisson error model) and US$4.113
billion per annum (OLS model). The conventional TCM
benefits estimates were US$406.351 million per annum
for the Poisson error model and US$411.251 million per
annum for the OLS model. Annual benefits were more
than 20 times the annual social cost of streamflows at
the flow level (340 000 acre-feet per annum) at which
the trips occurred. Benefits at the flow level at which
trips occurred were 8 times the social costs of providing
the highest flow (840 000 acre-feet per annum) listed in
the survey CVM scenarios. The coefficient of the travel
expenses variable—regardless of whether expenses were
broadly or narrowly defined—was always negative, and
the r-value of the coefficient indicated high explanatory
power for this variable. However, as the number of
expenditure categories used to define variable trip expen-
ditures increased, the fit of the model improved notably.

Table 1 (produced by Lotus 1-2-3™) illustrates the
relation between trips to the site for the 12 month period
preceding the mail-out of the users survey and distance
traveled for Trinity River recreationists. Table 1 demon-
strates an almost monotonically decreasing relation
between distance traveled and the number of trips. How-
ever, the data in Table 1 are highly aggregated, and the
observations that enter the regression model are disag-
gregated. Hence, the use of more precise indicators of
goodness-of-fit is helpful in reaching an informed judge-
ment about the strength of the empirical relation linking
trips and travel expenses. One other feature of Table 1
that should be noted is that the provenance of the six
distance groups in Table 1 is a regional input-output
model by Douglas and Draper (1997). This model used
survey data to estimate the employment impacts of Trin-
ity River recreation trip expenditures.

The arithmetic underlying the calculation of the con-
ventional TCM benefits estimates is presented briefly.
The mean trip expenses for all households in the com-
plete expenses data set was US$553.8, the mean number
of trips per household was 5.9812, the mean round-trip
travel distance was 551.4 miles, and 711 585 households
made Trinity River recreation trips in 1993-1994. Mean
fuel costs were US$72.99; r = (US$72.99/US$553.8) =

Table |
One-way travel distance to the Trinity River recreation site versus the
average annual trips for 1214 respondents for six distance categories

One-way distance in miles Average number of trips

0-30 37.2
31-60 7.6
61-120 1.7
121-240 29
241-480 2.4

> 480 1.6

0.1318. Hence, a lower bound for ‘travel cost’ could be
based on the assumption that most of the fuel purchased
is used in traveling to the site. Thus, a = 0.1 was chosen
as a plausible lower bound ratio of travel cost to total
trip expenses and used to convert total benefits estimates
into TCM consumer surplus estimates.

The problem with « is that it provides lower bound
estimates. The US Federal Government currently reim-
burses travel cost by automobile at the rate of US$0.31
per mile. This fact could also be used to calculate a value
for the travel cost as B = [(551.4)(US$0.31)/
(US$553.8)] = 0.3087. Creel and Loomis (1990) use a
travel cost value of US$0.22 per mile. An adjustment of
the Creel and Loomis (1990) cost per mile value for a
3% annual inflation rate results in a conversion factor of
A = 0.2616.

Table 2, in concert with Table 3, illustrates an empiri-
cal weakness of the conventional TCM model. The cell
values in Table 2 are the 1993 mean per trip dollar
expenditures for trips taken in the last 12 months for
each of these categories that are used almost entirely at
the site. In Table 3, the individual cell values are the
1993 median dollar per trip expenditures for trips taken
in the last 12 months for each of five expenditure categ-
ories.

The data in Tables 2 and 3 have been smoothed by
imputing the mean value for the cell for missing obser-
vations. The regression models were estimated on cases
for which there were no missing expenditure data. The
out-of-sample predictions were made on a 412 case data
subset for which missing expense items were imputed a
value of zero; this procedure does not ‘smooth’ the data.
However, on average, fewer than 10% of the obser-
vations in each cell were imputed. Therefore, the smoo-
thing of the data should not affect the expenditures ver-
sus distance relation. Table 2 exhibits a roughly
monotonically increasing relation between distance and
expenditures. There are some irregularities in this
relation, the most notable being that mean expenditures
for recreationists who reside in the 0-30 mile distance
travel zone are greater for every category than for those
Trinity River users who live in the 31-60 mile zone.
However, the anomalies in Table 2 are virtually elimin-
ated in Table 3. Median expenditures are relatively
insensitive to large outlays by a relatively few individ-
uals.

Users who live furthest from the site spend an average
of 3.995 times as much on fuel as do those who live
closest to the site. The comparative values for food and
lodging are 6.481 and 4.691. The two ‘non-travel cost
categories’ are supplies and guides. Supply expenditures
increase by a factor of 3.694 as distance ranges from the
lowest to the highest category, and the corresponding
value for guides is 5.325. Median supply expenditures
increase by a factor of 20 in Table 3 as the maximum
distance from the site increases from 30 miles to more
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Table 2

One-way travel-distance in miles to the Trinity River recreation site versus mean expenditures in 1993 dollars for five variable trip expenditure

categories for 1003 recreationists (S-Plus™ program output)

Distance Fuel Food Supplies Guides Lodging
0-30 37.39 42.17 28.36 47.43 56.45

31-60 21.24 35.57 20.06 39.63 22.23

61-120 36.81 63.17 2543 26.83 48.06

121-140 60.40 131.37 62.78 157.04 171.08

241-480 74.96 153.51 76.76 127.14 195.02

> 480 149.38 273.31 104.76 252.57 264.82
Table 3

One-way travel distance in miles to the Trinity River recreation site versus median expenditures for five variable trip expenditure categories for

1003 recreationists (S-Plus™ program output)

Distance Fuel Food Supplies Guides Lodging
0-30 125 225 5 0 0
31-60 20 20 10 0 0
61-120 30 40 10 0 0
121-140 50 100 50 100 100
241-480 60 115 50 100 125

> 480 100 200 100 190 200

than 480 miles. Thus, outlays for the non-travel cost
items are highly responsive to changes in distance.
Table 4 supplements the information presented in
Table 1 by providing quantitative measures of the good-
ness-of-fit of two variants of Eq. (21) (OLS and PII) in
Table 4. Statistics for a third model, the linear OLS
model in which the expenses and distance variables are
not inverted, are presented in another column in Table
4. The linear OLS model is the textbook version of the
conventional TCM model. Hence, it is included in Table
3 despite the fact that it does not provide a good fit for
the Trinity River data set. Note that a finite travel cost
(distance) cuts off all trips to the site for this model.
The linear OLS model is particularly convenient to
use for the purpose of contrasting the disparate consumer

Table 4

surplus estimates produced with the conventional TCM
model and the total expenses model. A linear homogen-
ous transformation of one independent variable does not
change the R?, F-statistic, or the #-values of the estimated
coefficients in the linear OLS model with randomly nor-
mally distributed errors. To calculate the conventional
consumer surplus, the distance variable must be replaced
by a variable which represents the travel cost of the
roundtrip distance to the site. The new variable is called
TCM(1) if the travel cost is US$0.1004 per mile, and
TCM(2) if the travel cost is US$0.2627 per mile. The
use of TCM(1) in conjunction with the total expenses
model generates the annual consumer surplus of
US$285.47 million dollars per annum listed in Table 4.
The per mile travel cost value for TCM(2) generates an

Coefficients, t-values (in parenthesis), R?, and benefits estimates for two variants of Eq. (21)—OLS (Limdep™ output) and PII (S-Plus™ output)—

and the linear OLS model (Limdep™ output)

Parameter or statistic Linear OLS OLS PII

Constant 8.123 (5.903) 2.20571 (2.828) 2.4586 (3.354)
b, — 0.003721 ( — 2.213) 68.798 (10.883) 71.018 (11.103)
by — 0.003889 ( — 1.584) 14.878 (10.778) 9.8183 (7.029)
In-sample R? 0.0157 0.4024 0.3943

Trips 2945 2945 2945

Pred. trips 2945 2945 2945
Out-of-sample R? 0.0329 0.3223 0.3724
Out-of-sample trips 1300 1300 1300

Pred. trips 1940.8 1022.3 1170

Percent error + 49.3% — 21.4% — 10.0%

Annual benefits

US$285.47 million

US$411.251 million

US$406.351 million
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